The Department of Atomic Energy (DAE) is a department within the Ministry of Science and Technology in India. The department is responsible for nuclear technology, including nuclear power and research.
Nuclear Fuel Complex
The Nuclear Fuel Complex (NFC), Hyderabad, India was established in 1971 as a major industrial unit of Department of Atomic Energy (India), for the supply of nuclear fuel bundles and reactor core components. It is a unique facility where natural and enriched uranium fuel, zirconium alloy cladding and reactor core components are manufactured under one roof. NFC symbolizes the strong emphasis on self-reliance in the Indian Nuclear Power Programme.
Natural Uranium is mined in the uranium mines around Jadugora in the Singhbhum area of Jharkhand state is converted into nuclear fuel assemblies. A 220 MW PHWR fuel bundle contains 15.2kg of natural uranium dioxide. Uranium dioxide pellets, which generate heat while undergoing fission, also generate fission products. The fission products, which are radioactive should be contained and not allowed to mix with coolant water. Hence the UO2, pellets are contained in Zirconium alloy tubes with both the ends hermetically sealed.
Located near the famous shrine of Moulali at Hyderabad, NFC is spread over an area of 150 acres. Production in its various plants started in the early seventies. Presently NFC has around 3700 personnel.
IGCAR
The Reactor Research Centre set up at Kalpakkam, India, 80 km south of Chennai in 1971 under the Department of Atomic Energy (DAE) was renamed Indira Gandhi Center for Atomic Research (IGCAR) in 1985. The center is primarily a research facility besides being a nuclear power plant aiding in meeting a percentage of the electricity demands of the country.
There are two reactors at IGCAR. FBTR is a liquid metal cooled fast breeder reactor. There is another reactor called KAMINI (Kalpakkam Mini) which is a light water reactor with U233 as fuel meant for neutron radiography and activation analysis experiments. These reactors are operated and maintained by Reactor Operation and Maintenance Group(ROMG).
It has mastered the technology of reprocessing highly irradiated mixed carbide fuel for the first time in the world.
The Director of IGCAR is Dr. Baldev Raj.
Bhabha Atomic Research Centre
The Bhabha Atomic Research Centre (BARC) is India's primary nuclear research facility. It has a number of nuclear reactors, all of which are used for India's nuclear power and research programme
[edit] History
India's first reactor (Apsara) and a plutonium reprocessing facility, as photographed by a US satellite on February 19, 1966.BARC was started in 1954, as the Atomic Energy Establishment, Trombay (AEET), and became India's primary nuclear research centre, taking over charge of most nuclear scientists that were at the Tata Institute of Fundamental Research. After Homi J. Bhabha's death in 1966, the centre was renamed as the Bhabha Atomic Research Centre.
The first reactors at BARC and its affiliated power generation centres were imported from the west. India's first power reactors, installed at the Tarapur Atomic Power Plant (TAPP) were from the United States.
The primary importance of BARC is as a research centre. The BARC and the Indian government has consistently maintained that the reactors are used for this purpose only: Apsara (1956; named by the then Prime Minister of India, Jawaharlal Nehru when he likened the blue Cerenkov radiation to the beauty of the Apsaras (Indra's court dancers), CIRUS (1960; the "Canada-India Reactor" with assistance from Canada), the now-defunct ZERLINA (1961; Zero Energy Reactor for Lattice Investigations and Neutron Assay), Purnima I (1972), Purnima II (1984), Dhruva(1985), Purnima III (1990), and Kamini.
The plutonium used in India's 1974 nuclear test carried out in Pokhran in the Thar desert of Rajasthan (Peaceful Nuclear Explosion) came from CIRUS, the primary charter of which was peaceful nuclear research. The 1974 test (and the 1998 tests that followed) gave Indian scientists the technological know-how and confidence not only to develop nuclear fuel for future reactors to be used in power generation and research, but also the capacity to refine the same fuel into weapons-grade fuel to be used in the development of nuclear weapons.
[edit] India and the NPT
India is not a part of the Nuclear Non-Proliferation Treaty (NPT), citing concerns that it unfairly favours the established nuclear powers, and provides no provision for complete nuclear disarmament. Indian officials argued that India's refusal to sign the treaty stemmed from its fundamentally discriminatory character; the treaty places restrictions on the nonnuclear weapons states but does little to curb the modernization and expansion of the nuclear arsenals of the nuclear weapons states.
More recently, India and the United States signed an agreement to enhance nuclear cooperation between the two countries, and for India to participate in an international consortium on fusion research, ITER (International Thermonuclear Experimental Reactor) so there are signs that the west wants to bring India in the Nuclear mainfold. India is the only country to be given such a status due to its impeccable record of Nuclear non proliferation.
[edit] Civilian research
The BARC also conducts research in biotechnology at the Gamma Gardens, and has developed numerous disease resistant and high-yielding crop varieties, particularly groundnuts. There is also a great deal of research in Liquid Metal Magnetohydrodynamics for power generation.
On June 4, 2005, with the goal of encouraging research in basic sciences, BARC started the Homi Bhabha National Institute. Research institutions affiliated to BARC include IGCAR (Indira Gandhi Centre for Atomic Research), RRCAT (Raja Ramanna Centre for Advanced Technology), and VECC (Variable Energy Cyclotron Centre).
Power projects that have benefited from BARC expertise but which fall under the NPCIL (Nuclear Power Corporation of India Limited) are KAPP (Kakrapar Atomic Power Project), RAPP (Rajasthan Atomic Power Project), and TAPP (Tarapur Atomic Power Project).
BUDGETORY ALLOCATION (Rs. in crores) CAPITAL REVENUE TOTAL
PLAN NON-PLAN PLAN NON-PLAN
Budget Estimates 2007-2008 629.10 0.00 13.66 632.29 1275.05
Final Grant 2007-2008 610.00 0.00 21.04 693.02 1324.06
Actual Exp. 2007-2008 599.61 0.00 19.33 683.16 1302.10
Budget Estimates 2008-2009 630.10 0.00 23.45 707.60 1361.15
Actual Exp. 2008-2009 (Up to May 2008) 55.53 0.00 4.63 154.54 214.70
Monday, May 18, 2009
Saturday, May 16, 2009
Nuclear reactor technology
A nuclear reactor is a device in which nuclear chain reactions are initiated, controlled, and sustained at a steady rate, as opposed to a nuclear bomb, in which the chain reaction occurs in a fraction of a second and is uncontrolled causing an explosion.
The most significant use of nuclear reactors is as an energy source for the generation of electrical power (see Nuclear power) and for the power in some ships (see Nuclear marine propulsion). This is usually accomplished by methods that involve using heat from the nuclear reaction to power steam turbines. There are also other less common uses as discussed below.
Contents [hide]
1 How it works
1.1 Reactor
1.1.1 Fission
1.1.2 Heat Generation
1.1.3 Cooling
1.1.4 Reactivity control
1.2 Electrical power generation
2 Components
3 The people in a nuclear power plant
4 Reactor types
4.1 Classifications
4.1.1 Classification by type of nuclear reaction
4.1.2 Classification by moderator material
4.1.3 Classification by coolant
4.1.4 Classification by generation
4.1.5 Classification by phase of fuel
4.1.6 Classification by use
4.2 Current technologies
4.3 Future and developing technologies
4.3.1 Advanced reactors
4.3.2 Generation IV reactors
4.3.3 Generation V+ reactors
4.3.4 Fusion reactors
5 Nuclear fuel cycle
5.1 Fueling of nuclear reactors
6 Safety
7 History - Early reactors
8 Natural nuclear reactors
9 See also
10 References
11 External links
[edit] How it works
An induced nuclear fission event. A neutron is absorbed by the nucleus of a uranium-235 atom, which in turn splits into fast-moving lighter elements (fission products) and free neutrons.The physics of operating a nuclear reactor are explained in Nuclear reactor physics.
Just as many conventional thermal power stations generate electricity by harnessing the thermal energy released from burning fossil fuels, nuclear power plants convert the thermal energy released from nuclear fission.
[edit] Reactor
The reactor is used to convert nuclear (inaccurately also known as 'atomic') energy into heat. While a reactor could be one in which heat is produced by fusion or radioactive decay, this description focuses on the basic principles of the fission reactor.
[edit] Fission
When a relatively large fissile atomic nucleus (usually uranium-235, plutonium-239 or plutonium-241) absorbs a neutron it is likely to undergo nuclear fission. The original heavy nucleus splits into two or more lighter nuclei, releasing kinetic energy, gamma radiation and free neutrons; collectively known as fission products.[1] A portion of these neutrons may later be absorbed by other fissile atoms and trigger further fission events, which release more neutrons, and so on.
The nuclear chain reaction can be controlled by using neutron poisons and neutron moderators to change the portion of neutrons that will go on to cause more fissions. In nuclear engineering, a neutron moderator is a medium which reduces the velocity of fast neutrons, thereby turning them into thermal neutrons capable of sustaining a nuclear chain reaction involving uranium-235.
Commonly used moderators include regular (light) water (75% of the world's reactors), solid graphite (20% of reactors) and heavy water (5% of reactors). Beryllium has also been used in some experimental types, and hydrocarbons have been suggested as another possibility.[2] Increasing or decreasing the rate of fission will also increase or decrease the energy output of the reactor.
[edit] Heat Generation
The reactor core generates heat in a number of ways:
The kinetic energy of fission products is converted to thermal energy when these nuclei collide with nearby atoms.
Some of the gamma rays produced during fission are absorbed by the reactor in the form of heat.
Heat produced by the radioactive decay of fission products and materials that have been activated by neutron absorption. This decay heat source will remain for some time even after the reactor is shutdown.
The heat power generated by the nuclear reaction is 1,000,000 times that of the equal mass of coal.
[edit] Cooling
A cooling source - often water but sometimes a liquid metal - is circulated past the reactor core to absorb the heat that it generates. The heat is carried away from the reactor and is then used to generate steam. Most reactor systems employ a cooling system that is physically separate from the water that will be boiled to produce pressurized steam for the turbines, like the pressurized water reactor. But in some reactors the water for the steam turbines is boiled directly by the reactor core, for example the boiling water reactor.[3]
[edit] Reactivity control
The power output of the reactor is controlled by controlling how many neutrons are able to create more fissions.
Control rods that are made of a nuclear poison are used to absorb neutrons. Absorbing more neutrons in a control rod means that there are fewer neutrons available to cause fission, so pushing the control rod deeper into the reactor will reduce its power output, and extracting the control rod will increase it.
In some reactors, the coolant also acts as a neutron moderator. A moderator increases the power of the reactor by causing the fast neutrons that are released from fission to lose energy and become thermal neutrons. Thermal neutrons are more likely than fast neutrons to cause fission, so more neutron moderation means more power output from the reactors. If the coolant is a moderator, then temperature changes can affect the density of the coolant/moderator and therefore change power output. A higher temperature coolant would be less dense, and therefore a less effective moderator.
In other reactors the coolant acts as a poison by absorbing neutrons in the same way that the control rods do. In these reactors power output can be increased by heating the coolant, which makes it a less dense poison. Nuclear reactors generally have automatic and manual systems to insert large amounts of poison (boron) into the reactor to shut the fission reaction down if unsafe conditions are detected.[4]
[edit] Electrical power generation
The energy released in the fission process generates heat, some of which can be converted into usable energy. A common method of harnessing this thermal energy is to use it to boil water to produce pressurized steam which will then drive a steam turbine that generates electricity.[4]
[edit] Components
The control room of NC State's Pulstar Nuclear Reactor.The key components common to most types of nuclear power plants are:
Nuclear fuel
Nuclear reactor core
Neutron moderator
Neutron poison
Coolant (often the Neutron Moderator and the Coolant are the same, usually both purified water)
Control rods
Reactor vessel
Boiler feedwater pump
Steam generators (not in BWRs)
Steam turbine
Electrical generator
Condenser
Cooling tower (not always required)
Radwaste System (a section of the plant handling radioactive waste)
Refueling Floor
Spent fuel pool
Reactor Protective System (RPS)
Emergency Core Cooling Systems (ECCS)
Standby Liquid Control System (emergency boron injection, in BWRs only)
Containment building
Control room
Emergency Operations Facility
[edit] The people in a nuclear power plant
Nuclear power plants typically employ just under a thousand people per reactor (including security guards and engineers associated with the plant but possibly working elsewhere).[citation needed]
Nuclear engineers
Reactor operators
Health physicists
Nuclear Regulatory Commission Resident Inspectors
In the United States and Canada, workers except for management, professional (such as engineers) and security personnel may be members of either the International Brotherhood of Electrical Workers (IBEW) or the Utility Workers Union of America (AFL-CIO) (IUWUA). (In the unions seniority may be used to bid to higher paying work. The IBEW and IUWUA do not have a mandatory retirement age.)
[edit] Reactor types
NC State's PULSTAR Reactor is a 1 MW pool-type research reactor with 4% enriched, pin-type fuel consisting of UO2 pellets in zircaloy cladding.
[edit] Classifications
Nuclear Reactors are classified by several methods; a brief outline of these classification schemes is provided.
[edit] Classification by type of nuclear reaction
Nuclear fission. Most reactors, and all commercial ones, are based on nuclear fission. They generally use uranium and its product plutonium as nuclear fuel, though a thorium fuel cycle is also possible. This article takes "nuclear reactor" to mean fission reactor unless otherwise stated. Fission reactors can be divided roughly into two classes, depending on the energy of the neutrons that sustain the fission chain reaction:
Thermal reactors use slowed or thermal neutrons. Almost all current reactors are of this type. These contain neutron moderator materials that slow neutrons until their neutron temperature is thermalized, that is, until their kinetic energy approaches the average kinetic energy of the surrounding particles. Thermal neutrons have a far higher cross section (probability) of fissioning the fissile nuclei uranium-235, plutonium-239, and plutonium-241, and a relatively lower probability of neutron capture by uranium-238 compared to the faster neutrons that originally result from fission, allowing use of low-enriched uranium or even natural uranium fuel. The moderator is often also the coolant, usually water under high pressure to increase the boiling point. These are surrounded by reactor vessel, instrumentation to monitor and control the reactor, radiation shielding, and containment building.
Fast neutron reactors directly use fast neutrons to fission their fuel. They do not have a neutron moderator, and use less-moderating coolants. Maintaining a chain reaction requires the fuel to be more highly enriched in fissile material (about 20% or more) due to the relatively lower probability of fission versus capture by U-238. Fast reactors have the potential to produce less transuranic waste because all actinides are fissionable with fast neutrons,[5] but they are more difficult to build and more expensive to operate. Overall, fast reactors are less common than thermal reactors in most applications. Some early power stations were fast reactors, as are some Russian naval propulsion units. Construction of prototypes is continuing (see fast breeder or generation IV reactors).
Nuclear fusion. Fusion power is an experimental technology, generally with hydrogen as fuel. While not currently suitable for power production, Farnsworth-Hirsch fusors are used to produce neutron radiation.
Radioactive decay. Examples include radioisotope thermoelectric generators and atomic batteries, which generate heat and power by exploiting passive radioactive decay.
[edit] Classification by moderator material
Used by thermal reactors:
Graphite moderated reactors
Water moderated reactors
Heavy water reactors
Light water moderated reactors (LWRs). Light water reactors use ordinary water to moderate and cool the reactors. When at operating temperature, if the temperature of the water increases, its density drops, and fewer neutrons passing through it are slowed enough to trigger further reactions. That negative feedback stabilizes the reaction rate. Graphite and heavy water reactors tend to be more thoroughly thermalised than light water reactors. Due to the extra thermalization, these types can use natural uranium/unenriched fuel.
Light element moderated reactors. These reactors are moderated by lithium or beryllium.
Molten salt reactors (MSRs) are moderated by a light elements such as lithium or beryllium, which are constituents of the coolant/fuel matrix salts LiF and BeF2.
Liquid metal cooled reactors, such as one whose coolant is a mixture of Lead and Bismuth, may use BeO as a moderator.
Organically moderated reactors (OMR) use biphenyl and terphenyl as moderator and coolant.
[edit] Classification by coolant
In thermal nuclear reactors (LWRs in specific), the coolant acts as a moderator that must slow down the neutrons before they can be efficiently absorbed by the fuel.Water cooled reactor
Pressurized water reactor (PWR)
A primary characteristic of PWRs is a pressurizer, a specialized pressure vessel. Most commercial PWRs and naval reactors use pressurizers. During normal operation, a pressurizer is partially filled with water, and a steam bubble is maintained above it by heating the water with submerged heaters. During normal operation, the pressurizer is connected to the primary reactor pressure vessel (RPV) and the pressurizer "bubble" provides an expansion space for changes in water volume in the reactor. This arrangement also provides a means of pressure control for the reactor by increasing or decreasing the steam pressure in the pressurizer using the pressurizer heaters.
Pressurised channels. Channel-type reactors can be refueled under load.
Boiling water reactor (BWR)
BWRs are characterized by boiling water around the fuel rods in the lower portion of primary reactor pressure vessel. During normal operation, pressure control is accomplished by controlling the amount of steam flowing from the reactor pressure vessel to the turbine.
Pool-type reactor
Liquid metal cooled reactor. Since water is a moderator, it cannot be used as a coolant in a fast reactor. Liquid metal coolants have included sodium, NaK, lead, lead-bismuth eutectic, and in early reactors, mercury.
Sodium-cooled fast reactor
Lead-cooled fast reactor
Gas cooled reactors are cooled by a circulating inert gas, usually helium. Nitrogen and carbon dioxide have also been used. Utilization of the heat varies, depending on the reactor. Some reactors run hot enough that the gas can directly power a gas turbine. Older designs usually run the gas through a heat exchanger to make steam for a steam turbine.
Molten Salt Reactors (MSRs) are cooled by circulating a molten salt, typically a eutectic mixture of fluoride salts, such as LiF and BeF2. In a typical MSR, the coolant is also used a matrix in which the fissile material is dissolved.
[edit] Classification by generation
Generation I reactor
Generation II reactor (most current nuclear power plants)
Generation III reactor (evolutionary improvements of existing designs)
Generation IV reactor (technologies still under development)
The "Gen IV"-term was dubbed by the DOE for developing new plant types in 2000.[6] In 2003 the French CEA was the first to refer to Gen II types in Nucleonics Week; "Etienne Pochon, CEA director of nuclear industry support, outlined EPR's improved performance and enhanced safety features compared to the advanced Generation II designs on which it was based.".[7] First mentioning of Gen III was also in 2000 in conjunction with the launch of the GIF plans.
[edit] Classification by phase of fuel
Solid fueled
Fluid fueled
Aqueous homogeneous reactor
Molten salt reactor
Gas fueled
[edit] Classification by use
Electricity
Nuclear power plants
Propulsion, see nuclear propulsion
Nuclear marine propulsion
Various proposed forms of rocket propulsion
Other uses of heat
Desalination
Heat for domestic and industrial heating
Hydrogen production for use in a hydrogen economy
Production reactors for transmutation of elements
Breeder reactors. Fast breeder reactors are capable of enriching Uranium during the fission chain reaction (by converting fertile U-238 to Pu-239) which allows an operational fast reactor to generate more fissile material than it consumes. Thus, a breeder reactor, once running, can be re-fueled with natural or even depleted uranium.[8]
Creating various radioactive isotopes, such as americium for use in smoke detectors, and cobalt-60, molybdenum-99 and others, used for imaging and medical treatment.
Production of materials for nuclear weapons such as weapons-grade plutonium
Providing a source of neutron radiation (for example with the pulsed Godiva device) and positron radiation[clarification needed]) (e.g. neutron activation analysis and potassium-argon dating[clarification needed])
Research reactor: Typically reactors used for research and training, materials testing, or the production of radioisotopes for medicine and industry. These are much smaller than power reactors or those propelling ships, and many are on university campuses. There are about 280 such reactors operating, in 56 countries. Some operate with high-enriched uranium fuel, and international efforts are underway to substitute low-enriched fuel.[9]
[edit] Current technologies
There are two types of nuclear power in current use:
The Radioisotope thermoelectric generator produces heat through passive radioactive decay. Some radioisotope thermoelectric generators have been created to power space probes (for example, the Cassini probe), some lighthouses in the former Soviet Union, and some pacemakers. The heat output of these generators diminishes with time; the heat is converted to electricity utilising the thermoelectric effect.
Nuclear fission reactors produce heat through a controlled nuclear chain reaction in a critical mass of fissile material. All current nuclear power plants are critical fission reactors, which are the focus of this article. The output of fission reactors is controllable. There are several subtypes of critical fission reactors, which can be classified as Generation I, Generation II and Generation III. All reactors will be compared to the Pressurized Water Reactor (PWR), as that is the standard modern reactor design.
Diablo Canyon - a PWRPressurized Water Reactors (PWR)
These reactors use a pressure vessel to contain the nuclear fuel, control rods, moderator, and coolant. They are cooled and moderated by high pressure liquid water. The hot radioactive water that leaves the pressure vessel is looped through a steam generator, which in turn heats a secondary (non-radioactive) loop of water to steam that can run turbines. They are the majority of current reactors, and are generally considered the safest and most reliable technology currently in large scale deployment.[citation needed] This is a thermal neutron reactor design, the newest of which are the Advanced Pressurized Water Reactor and the European Pressurized Reactor. United States Naval reactors are of this type.
Laguna Verde nuclear power plant - a BWRBoiling Water Reactors (BWR)
A BWR is like a PWR without the steam generator. A boiling water reactor is cooled and moderated by water like a PWR, but at a lower pressure, which allows the water to boil inside the pressure vessel producing the steam that runs the turbines. Unlike a PWR, there is no primary and secondary loop. The thermal efficiency of these reactors can be higher, and they can be simpler, and even potentially more stable and safe. This is a thermal neutron reactor design, the newest of which are the Advanced Boiling Water Reactor and the Economic Simplified Boiling Water Reactor.
The CANDU Qinshan Nuclear Power PlantPressurized Heavy Water Reactor (PHWR)
A Canadian design, (known as CANDU) these reactors are heavy-water-cooled and -moderated Pressurized-Water reactors. Instead of using a single large pressure vessel as in a PWR, the fuel is contained in hundreds of pressure tubes. These reactors are fueled with natural uranium and are thermal neutron reactor designs. PHWRs can be refueled while at full power, which makes them very efficient in their use of uranium (it allows for precise flux control in the core). CANDU PHWR's have been built in Canada, Argentina, China, India (pre-NPT), Pakistan (pre-NPT), Romania, and South Korea. India also operates a number of PHWR's, often termed 'CANDU-derivatives', built after the Government of Canada halted nuclear dealings with India following the 1974 Smiling Buddha nuclear weapon test.
The Ignalina Nuclear Power Plant - a still operating RBMKReaktor Bolshoy Moshchnosti Kanalniy (High Power Channel Reactor) (RBMK)
A Soviet Union design, built to produce plutonium as well as power. RBMKs are water cooled with a graphite moderator. RBMKs are in some respects similar to CANDU in that they are refuelable during power operation and employ a pressure tube design instead of a PWR-style pressure vessel. However, unlike CANDU they are very unstable and too large to have containment buildings, making them dangerous in the case of an accident. A series of critical safety flaws have also been identified with the RBMK design, though some of these were corrected following the Chernobyl accident. RBMK reactors are generally considered one of the most dangerous reactor designs in use. The Chernobyl plant had four RBMK reactors.
The Torness nuclear power station - an AGRGas Cooled Reactor (GCR) and Advanced Gas Cooled Reactor (AGR)
These are generally graphite moderated and CO2 cooled. They can have a high thermal efficiency compared with PWRs due to higher operating temperatures. There are a number of operating reactors of this design, mostly in the United Kingdom, where the concept was developed. Older designs (i.e. Magnox stations) are either shut down or will be in the near future. However, the AGCRs have an anticipated life of a further 10 to 20 years. This is a thermal neutron reactor design. Decommissioning costs can be high due to large volume of reactor core.
Liquid Metal Fast Breeder Reactor (LMFBR)
This is a reactor design that is cooled by liquid metal, totally unmoderated, and produces more fuel than it consumes. They are said to "breed" fuel, because they produce fissionable fuel during operation because of neutron capture. These reactors can function much like a PWR in terms of efficiency, and do not require much high pressure containment, as the liquid metal does not need to be kept at high pressure, even at very high temperatures. Superphénix in France was a reactor of this type, as was Fermi-I in the United States. The Monju reactor in Japan suffered a sodium leak in 1995 and was approved for restart in 2008. All three use/used liquid sodium. These reactors are fast neutron, not thermal neutron designs. These reactors come in two types:
The Superphenix, one of the few FBRsLead cooled
Using lead as the liquid metal provides excellent radiation shielding, and allows for operation at very high temperatures. Also, lead is (mostly) transparent to neutrons, so fewer neutrons are lost in the coolant, and the coolant does not become radioactive. Unlike sodium, lead is mostly inert, so there is less risk of explosion or accident, but such large quantities of lead may be problematic from toxicology and disposal points of view. Often a reactor of this type would use a lead-bismuth eutectic mixture. In this case, the bismuth would present some minor radiation problems, as it is not quite as transparent to neutrons, and can be transmuted to a radioactive isotope more readily than lead.
Sodium cooled
Most LMFBRs are of this type. The sodium is relatively easy to obtain and work with, and it also manages to actually prevent corrosion on the various reactor parts immersed in it. However, sodium explodes violently when exposed to water, so care must be taken, but such explosions wouldn't be vastly more violent than (for example) a leak of superheated fluid from a SCWR or PWR. EBR-I, the first reactor to have a core meltdown, was of this type.
Aqueous Homogeneous Reactor (AHR)
These reactors use soluble nuclear salts dissolved in water and mixed with a coolant and a neutron moderator.
[edit] Future and developing technologies
[edit] Advanced reactors
More than a dozen advanced reactor designs are in various stages of development.[10] Some are evolutionary from the PWR, BWR and PHWR designs above, some are more radical departures. The former include the Advanced Boiling Water Reactor (ABWR), two of which are now operating with others under construction, and the planned passively safe ESBWR and AP1000 units (see Nuclear Power 2010 Program).
The Integral Fast Reactor was built, tested and evaluated during the 1980s and then retired under the Clinton administration in the 1990s due to nuclear non-proliferation policies of the administration. Recycling spent fuel is the core of its design and it therefore produces only a fraction of the waste of current reactors.[11]
The Pebble Bed Reactor, a High Temperature Gas Cooled Reactor (HTGCR), is designed so high temperatures reduce power output by doppler broadening of the fuel's neutron cross-section. It uses ceramic fuels so its safe operating temperatures exceed the power-reduction temperature range. Most designs are cooled by inert helium. Helium is not subject to steam explosions, resists neutron absorption leading to radioactivity, and does not dissolve contaminants that can become radioactive. Typical designs have more layers (up to 7) of passive containment than light water reactors (usually 3). A unique feature that may aid safety is that the fuel-balls actually form the core's mechanism, and are replaced one-by-one as they age. The design of the fuel makes fuel reprocessing expensive.
SSTAR, Small, Sealed, Transportable, Autonomous Reactor is being primarily researched and developed in the US, intended as a fast breeder reactor that is passively safe and could be remotely shut down in case the suspicion arises that it is being tampered with.
The Clean And Environmentally Safe Advanced Reactor (CAESAR) is a nuclear reactor concept that uses steam as a moderator - this design is still in development.
Subcritical reactors are designed to be safer and more stable, but pose a number of engineering and economic difficulties. One example is the Energy amplifier.
Thorium based reactors. It is possible to convert Thorium-232 into U-233 in reactors specially designed for the purpose. In this way, Thorium, which is more plentiful than uranium, can be used to breed U-233 nuclear fuel. U-233 is also believed to have favourable nuclear properties as compared to traditionally used U-235, including better neutron economy and lower production of long lived transuranic waste.
Advanced Heavy Water Reactor — A proposed heavy water moderated nuclear power reactor that will be the next generation design of the PHWR type. Under development in the Bhabha Atomic Research Centre (BARC).
KAMINI — A unique reactor using Uranium-233 isotope for fuel. Built by BARC and IGCAR Uses thorium.
India is also building a bigger scale FBTR or fast breeder thorium reactor to harness the power with the use of thorium.
[edit] Generation IV reactors
Generation IV reactors are a set of theoretical nuclear reactor designs currently being researched. These designs are generally not expected to be available for commercial construction before 2030. Current reactors in operation around the world are generally considered second- or third-generation systems, with the first-generation systems having been retired some time ago. Research into these reactor types was officially started by the Generation IV International Forum (GIF) based on eight technology goals. The primary goals being to improve nuclear safety, improve proliferation resistance, minimize waste and natural resource utilization, and to decrease the cost to build and run such plants.[12]
Gas cooled fast reactor
Lead cooled fast reactor
Molten salt reactor
Sodium-cooled fast reactor
Supercritical water reactor
Very high temperature reactor
[edit] Generation V+ reactors
Designs which are theoretically possible, but which are not being actively considered or researched at present. Though such reactors could be built with current or near term technology, they trigger little interest for reasons of economics, practicality, or safety.
Liquid Core reactor. A closed loop liquid core nuclear reactor, where the fissile material is molten uranium cooled by a working gas pumped in through holes in the base of the containment vessel.
Gas core reactor. A closed loop version of the nuclear lightbulb rocket, where the fissile material is gaseous uranium-hexafluoride contained in a fused silica vessel. A working gas (such as hydrogen) would flow around this vessel and absorb the UV light produced by the reaction. In theory, using UF6 as a working fuel directly (rather than as a stage to one, as is done now) would mean lower processing costs, and very small reactors. In practice, running a reactor at such high power densities would probably produce unmanageable neutron flux.
Gas core EM reactor. As in the Gas Core reactor, but with photovoltaic arrays converting the UV light directly to electricity.
Fission fragment reactor
[edit] Fusion reactors
Controlled nuclear fusion could in principle be used in fusion power plants to produce power without the complexities of handling actinides, but significant scientific and technical obstacles remain. Several fusion reactors have been built, but as yet none has 'produced' more thermal energy than electrical energy consumed. Despite research having started in the 1950s, no commercial fusion reactor is expected before 2050. The ITER project is currently leading the effort to commercialize fusion power.
[edit] Nuclear fuel cycle
Main article: Nuclear fuel cycle
Thermal reactors generally depend on refined and enriched uranium. Some nuclear reactors can operate with a mixture of plutonium and uranium (see MOX). The process by which uranium ore is mined, processed, enriched, used, possibly reprocessed and disposed of is known as the nuclear fuel cycle.
Under 1% of the uranium found in nature is the easily fissionable U-235 isotope and as a result most reactor designs require enriched fuel. Enrichment involves increasing the percentage of U-235 and is usually done by means of gaseous diffusion or gas centrifuge. The enriched result is then converted into uranium dioxide powder, which is pressed and fired into pellet form. These pellets are stacked into tubes which are then sealed and called fuel rods. Many of these fuel rods are used in each nuclear reactor.
Most BWR and PWR commercial reactors use uranium enriched to about 4% U-235, and some commercial reactors with a high neutron economy do not require the fuel to be enriched at all (that is, they can use natural uranium). According to the International Atomic Energy Agency there are at least 100 research reactors in the world fueled by highly enriched (weapons-grade/90% enrichment uranium). Theft risk of this fuel (potentially used in the production of a nuclear weapon) has led to campaigns advocating conversion of this type of reactor to low-enrichment uranium (which poses less threat of proliferation).[13]
It should be noted that fissile U-235 and non-fissile but fissionable and fertile U-238 are both used in the fission process. U-235 is fissionable by thermal (i.e. slow-moving) neutrons. A thermal neutron is one which is moving about the same speed as the atoms around it. Since all atoms vibrate proportionally to their absolute temperature, a thermal neutron has the best opportunity to fission U-235 when it is moving at this same vibrational speed. On the other hand, U-238 is more likely to capture a neutron when the neutron is moving very fast. This U-239 atom will soon decay into plutonium-239, which is another fuel. Pu-239 is a viable fuel and must be accounted for even when a highly enriched uranium fuel is used. Plutonium fissions will dominate the U-235 fissions in some reactors, especially after the initial loading of U-235 is spent. Plutonium is fissionable with both fast and thermal neutrons, which make it ideal for either nuclear reactors or nuclear bombs.
Most reactor designs in existence are thermal reactors and typically use water as a neutron moderator (moderator means that it slows down the neutron to a thermal speed) and as a coolant. But in a fast breeder reactor, some other kind of coolant is used which will not moderate or slow the neutrons down much. This enables fast neutrons to dominate, which can effectively be used to constantly replenish the fuel supply. By merely placing cheap unenriched uranium into such a core, the non-fissionable U-238 will be turned into Pu-239, "breeding" fuel.
[edit] Fueling of nuclear reactors
The amount of energy in the reservoir of nuclear fuel is frequently expressed in terms of "full-power days," which is the number of 24-hour periods (days) a reactor is scheduled for operation at full power output for the generation of heat energy. The number of full-power days in a reactor's operating cycle (between refueling outage times) is related to the amount of fissile uranium-235 (U-235) contained in the fuel assemblies at the beginning of the cycle. A higher percentage of U-235 in the core at the beginning of a cycle will permit the reactor to be run for a greater number of full-power days.
At the end of the operating cycle, the fuel in some of the assemblies is "spent" and is discharged and replaced with new (fresh) fuel assemblies, although in practice it is the buildup of reaction poisons in nuclear fuel that determines the lifetime of nuclear fuel in a reactor. Long before all possible fission has taken place, the buildup of long-lived neutron absorbing fission byproducts impedes the chain reaction. The fraction of the reactor's fuel core replaced during refueling is typically one-fourth for a boiling-water reactor and one-third for a pressurized-water reactor.
Not all reactors need to be shut down for refueling; for example, pebble bed reactors, RBMK reactors, molten salt reactors, Magnox, AGR and CANDU reactors allow fuel to be shifted through the reactor while it is running. In a CANDU reactor, this also allows individual fuel elements to be situated within the reactor core that are best suited to the amount of U-235 in the fuel element.
The amount of energy extracted from nuclear fuel is called its burnup, which is expressed in terms of the heat energy produced per initial unit of fuel weight. Burn up is commonly expressed as megawatt days thermal per metric ton of initial heavy metal.
[edit] Safety
Main article: Nuclear safety
See also: Nuclear safety in the U.S.
[edit] History - Early reactors
The concept of a nuclear chain reaction was first realized by Hungarian scientist Leó Szilárd in 1933. He filed a patent for his idea of a simple nuclear reactor the following year.[14]
The first artificial nuclear reactor, Chicago Pile-1, was constructed at the University of Chicago by a team led by Enrico Fermi in 1942. It achieved criticality on December 2, 1942[15] at 3:25 PM. The reactor support structure was made of wood, which supported a pile of graphite blocks, embedded in which was natural Uranium-oxide 'pseudospheres' or 'briquettes'. Inspiration for such a reactor was provided by the discovery by Lise Meitner, Fritz Strassman and Otto Hahn in 1938 that bombardment of Uranium with neutrons (provided by an Alpha-on-Beryllium fusion reaction, a "neutron howitzer") produced a Barium residue, which they reasoned was created by the fissioning of the Uranium nuclei. Subsequent studies revealed that several neutrons were also released during the fissioning, making available the opportunity for a chain reaction. Shortly after the discovery of fission, Hitler's Germany invaded Poland in 1939, starting World War II in Europe, and all such research became militarily classified. On August 2, 1939 Albert Einstein wrote a letter to President Franklin D. Roosevelt suggesting that the discovery of Uranium's fission could lead to the development of "extremely powerful bombs of a new type", giving impetus to the study of reactors and fission.
Soon after the Chicago Pile, the U.S. military developed nuclear reactors for the Manhattan Project starting in 1943. The primary purpose for these reactors was the mass production of plutonium (primarily at the Hanford Site) for nuclear weapons. Fermi and Leo Szilard applied for a patent on reactors on 19 December, 1944. Its issuance was delayed for 10 years because of wartime secrecy.[16]
"World's first nuclear power plant" is the claim made by signs at the site of the EBR-I, which is now a museum near Arco, Idaho. This experimental LMFBR operated by the U.S. Atomic Energy Commission produced 0.8 kW in a test on December 20, 1951 [17] and 100 kW (electrical) the following day,[18] having a design output of 200 kW (electrical).
Besides the military uses of nuclear reactors, there were political reasons to pursue civilian use of atomic energy. U.S. President Dwight Eisenhower made his famous Atoms for Peace speech to the UN General Assembly on December 8, 1953. This diplomacy led to the dissemination of reactor technology to U.S. institutions and worldwide.
The first nuclear power plant built for civil purposes was the AM-1 Obninsk Nuclear Power Plant, launched on June 27, 1954 in the Soviet Union. It produced around 5 MW (electrical).
After World War II, the U.S. military sought other uses for nuclear reactor technology. Research by the Army and the Air Force never came to fruition; however, the U.S. Navy succeeded when they steamed the USS Nautilus (SSN-571) on nuclear power January 17, 1955.
The first commercial nuclear power station, Calder Hall in Sellafield, England was opened in 1956 with an initial capacity of 50 MW (later 200 MW) [19] [20].
The first portable nuclear reactor "Alco PM-2A" used to generate electrical power (2 MW) for Camp Century from 1960.[21]
[edit] Natural nuclear reactors
Main article: Natural nuclear fission reactor
Although nuclear fission reactors are often thought of as being solely a product of modern technology, the first nuclear fission reactors were in fact naturally occurring. A natural nuclear fission reactor can occur under certain circumstances that mimic the conditions in a constructed reactor.[22] Fifteen natural fission reactors have so far been found in three separate ore deposits at the Oklo mine in Gabon, West Africa. First discovered in 1972 by French physicist Francis Perrin, they are collectively known as the Oklo Fossil Reactors. Self-sustaining nuclear fission reactions took place in these reactors approximately 1.5 billion years ago, and ran for a few hundred thousand years, averaging 100 kW of power output during that time.[23] The concept of a natural nuclear reactor was theorized as early as 1956 by Paul Kuroda at the University of Arkansas[24][25]
Such reactors can no longer form on Earth: radioactive decay over this immense time span has reduced the proportion of U-235 in naturally occurring uranium to below the amount required to sustain a chain reaction.
The natural nuclear reactors formed when a uranium-rich mineral deposit became inundated with groundwater that acted as a neutron moderator, and a strong chain reaction took place. The water moderator would boil away as the reaction increased, slowing it back down again and preventing a meltdown. The fission reaction was sustained for hundreds of thousands of years.
These natural reactors are extensively studied by scientists interested in geologic radioactive waste disposal. They offer a case study of how radioactive isotopes migrate through the earth's crust. This is a significant area of controversy as opponents of geologic waste disposal fear that isotopes from stored waste could end up in water supplies or be carried into the environment.
The most significant use of nuclear reactors is as an energy source for the generation of electrical power (see Nuclear power) and for the power in some ships (see Nuclear marine propulsion). This is usually accomplished by methods that involve using heat from the nuclear reaction to power steam turbines. There are also other less common uses as discussed below.
Contents [hide]
1 How it works
1.1 Reactor
1.1.1 Fission
1.1.2 Heat Generation
1.1.3 Cooling
1.1.4 Reactivity control
1.2 Electrical power generation
2 Components
3 The people in a nuclear power plant
4 Reactor types
4.1 Classifications
4.1.1 Classification by type of nuclear reaction
4.1.2 Classification by moderator material
4.1.3 Classification by coolant
4.1.4 Classification by generation
4.1.5 Classification by phase of fuel
4.1.6 Classification by use
4.2 Current technologies
4.3 Future and developing technologies
4.3.1 Advanced reactors
4.3.2 Generation IV reactors
4.3.3 Generation V+ reactors
4.3.4 Fusion reactors
5 Nuclear fuel cycle
5.1 Fueling of nuclear reactors
6 Safety
7 History - Early reactors
8 Natural nuclear reactors
9 See also
10 References
11 External links
[edit] How it works
An induced nuclear fission event. A neutron is absorbed by the nucleus of a uranium-235 atom, which in turn splits into fast-moving lighter elements (fission products) and free neutrons.The physics of operating a nuclear reactor are explained in Nuclear reactor physics.
Just as many conventional thermal power stations generate electricity by harnessing the thermal energy released from burning fossil fuels, nuclear power plants convert the thermal energy released from nuclear fission.
[edit] Reactor
The reactor is used to convert nuclear (inaccurately also known as 'atomic') energy into heat. While a reactor could be one in which heat is produced by fusion or radioactive decay, this description focuses on the basic principles of the fission reactor.
[edit] Fission
When a relatively large fissile atomic nucleus (usually uranium-235, plutonium-239 or plutonium-241) absorbs a neutron it is likely to undergo nuclear fission. The original heavy nucleus splits into two or more lighter nuclei, releasing kinetic energy, gamma radiation and free neutrons; collectively known as fission products.[1] A portion of these neutrons may later be absorbed by other fissile atoms and trigger further fission events, which release more neutrons, and so on.
The nuclear chain reaction can be controlled by using neutron poisons and neutron moderators to change the portion of neutrons that will go on to cause more fissions. In nuclear engineering, a neutron moderator is a medium which reduces the velocity of fast neutrons, thereby turning them into thermal neutrons capable of sustaining a nuclear chain reaction involving uranium-235.
Commonly used moderators include regular (light) water (75% of the world's reactors), solid graphite (20% of reactors) and heavy water (5% of reactors). Beryllium has also been used in some experimental types, and hydrocarbons have been suggested as another possibility.[2] Increasing or decreasing the rate of fission will also increase or decrease the energy output of the reactor.
[edit] Heat Generation
The reactor core generates heat in a number of ways:
The kinetic energy of fission products is converted to thermal energy when these nuclei collide with nearby atoms.
Some of the gamma rays produced during fission are absorbed by the reactor in the form of heat.
Heat produced by the radioactive decay of fission products and materials that have been activated by neutron absorption. This decay heat source will remain for some time even after the reactor is shutdown.
The heat power generated by the nuclear reaction is 1,000,000 times that of the equal mass of coal.
[edit] Cooling
A cooling source - often water but sometimes a liquid metal - is circulated past the reactor core to absorb the heat that it generates. The heat is carried away from the reactor and is then used to generate steam. Most reactor systems employ a cooling system that is physically separate from the water that will be boiled to produce pressurized steam for the turbines, like the pressurized water reactor. But in some reactors the water for the steam turbines is boiled directly by the reactor core, for example the boiling water reactor.[3]
[edit] Reactivity control
The power output of the reactor is controlled by controlling how many neutrons are able to create more fissions.
Control rods that are made of a nuclear poison are used to absorb neutrons. Absorbing more neutrons in a control rod means that there are fewer neutrons available to cause fission, so pushing the control rod deeper into the reactor will reduce its power output, and extracting the control rod will increase it.
In some reactors, the coolant also acts as a neutron moderator. A moderator increases the power of the reactor by causing the fast neutrons that are released from fission to lose energy and become thermal neutrons. Thermal neutrons are more likely than fast neutrons to cause fission, so more neutron moderation means more power output from the reactors. If the coolant is a moderator, then temperature changes can affect the density of the coolant/moderator and therefore change power output. A higher temperature coolant would be less dense, and therefore a less effective moderator.
In other reactors the coolant acts as a poison by absorbing neutrons in the same way that the control rods do. In these reactors power output can be increased by heating the coolant, which makes it a less dense poison. Nuclear reactors generally have automatic and manual systems to insert large amounts of poison (boron) into the reactor to shut the fission reaction down if unsafe conditions are detected.[4]
[edit] Electrical power generation
The energy released in the fission process generates heat, some of which can be converted into usable energy. A common method of harnessing this thermal energy is to use it to boil water to produce pressurized steam which will then drive a steam turbine that generates electricity.[4]
[edit] Components
The control room of NC State's Pulstar Nuclear Reactor.The key components common to most types of nuclear power plants are:
Nuclear fuel
Nuclear reactor core
Neutron moderator
Neutron poison
Coolant (often the Neutron Moderator and the Coolant are the same, usually both purified water)
Control rods
Reactor vessel
Boiler feedwater pump
Steam generators (not in BWRs)
Steam turbine
Electrical generator
Condenser
Cooling tower (not always required)
Radwaste System (a section of the plant handling radioactive waste)
Refueling Floor
Spent fuel pool
Reactor Protective System (RPS)
Emergency Core Cooling Systems (ECCS)
Standby Liquid Control System (emergency boron injection, in BWRs only)
Containment building
Control room
Emergency Operations Facility
[edit] The people in a nuclear power plant
Nuclear power plants typically employ just under a thousand people per reactor (including security guards and engineers associated with the plant but possibly working elsewhere).[citation needed]
Nuclear engineers
Reactor operators
Health physicists
Nuclear Regulatory Commission Resident Inspectors
In the United States and Canada, workers except for management, professional (such as engineers) and security personnel may be members of either the International Brotherhood of Electrical Workers (IBEW) or the Utility Workers Union of America (AFL-CIO) (IUWUA). (In the unions seniority may be used to bid to higher paying work. The IBEW and IUWUA do not have a mandatory retirement age.)
[edit] Reactor types
NC State's PULSTAR Reactor is a 1 MW pool-type research reactor with 4% enriched, pin-type fuel consisting of UO2 pellets in zircaloy cladding.
[edit] Classifications
Nuclear Reactors are classified by several methods; a brief outline of these classification schemes is provided.
[edit] Classification by type of nuclear reaction
Nuclear fission. Most reactors, and all commercial ones, are based on nuclear fission. They generally use uranium and its product plutonium as nuclear fuel, though a thorium fuel cycle is also possible. This article takes "nuclear reactor" to mean fission reactor unless otherwise stated. Fission reactors can be divided roughly into two classes, depending on the energy of the neutrons that sustain the fission chain reaction:
Thermal reactors use slowed or thermal neutrons. Almost all current reactors are of this type. These contain neutron moderator materials that slow neutrons until their neutron temperature is thermalized, that is, until their kinetic energy approaches the average kinetic energy of the surrounding particles. Thermal neutrons have a far higher cross section (probability) of fissioning the fissile nuclei uranium-235, plutonium-239, and plutonium-241, and a relatively lower probability of neutron capture by uranium-238 compared to the faster neutrons that originally result from fission, allowing use of low-enriched uranium or even natural uranium fuel. The moderator is often also the coolant, usually water under high pressure to increase the boiling point. These are surrounded by reactor vessel, instrumentation to monitor and control the reactor, radiation shielding, and containment building.
Fast neutron reactors directly use fast neutrons to fission their fuel. They do not have a neutron moderator, and use less-moderating coolants. Maintaining a chain reaction requires the fuel to be more highly enriched in fissile material (about 20% or more) due to the relatively lower probability of fission versus capture by U-238. Fast reactors have the potential to produce less transuranic waste because all actinides are fissionable with fast neutrons,[5] but they are more difficult to build and more expensive to operate. Overall, fast reactors are less common than thermal reactors in most applications. Some early power stations were fast reactors, as are some Russian naval propulsion units. Construction of prototypes is continuing (see fast breeder or generation IV reactors).
Nuclear fusion. Fusion power is an experimental technology, generally with hydrogen as fuel. While not currently suitable for power production, Farnsworth-Hirsch fusors are used to produce neutron radiation.
Radioactive decay. Examples include radioisotope thermoelectric generators and atomic batteries, which generate heat and power by exploiting passive radioactive decay.
[edit] Classification by moderator material
Used by thermal reactors:
Graphite moderated reactors
Water moderated reactors
Heavy water reactors
Light water moderated reactors (LWRs). Light water reactors use ordinary water to moderate and cool the reactors. When at operating temperature, if the temperature of the water increases, its density drops, and fewer neutrons passing through it are slowed enough to trigger further reactions. That negative feedback stabilizes the reaction rate. Graphite and heavy water reactors tend to be more thoroughly thermalised than light water reactors. Due to the extra thermalization, these types can use natural uranium/unenriched fuel.
Light element moderated reactors. These reactors are moderated by lithium or beryllium.
Molten salt reactors (MSRs) are moderated by a light elements such as lithium or beryllium, which are constituents of the coolant/fuel matrix salts LiF and BeF2.
Liquid metal cooled reactors, such as one whose coolant is a mixture of Lead and Bismuth, may use BeO as a moderator.
Organically moderated reactors (OMR) use biphenyl and terphenyl as moderator and coolant.
[edit] Classification by coolant
In thermal nuclear reactors (LWRs in specific), the coolant acts as a moderator that must slow down the neutrons before they can be efficiently absorbed by the fuel.Water cooled reactor
Pressurized water reactor (PWR)
A primary characteristic of PWRs is a pressurizer, a specialized pressure vessel. Most commercial PWRs and naval reactors use pressurizers. During normal operation, a pressurizer is partially filled with water, and a steam bubble is maintained above it by heating the water with submerged heaters. During normal operation, the pressurizer is connected to the primary reactor pressure vessel (RPV) and the pressurizer "bubble" provides an expansion space for changes in water volume in the reactor. This arrangement also provides a means of pressure control for the reactor by increasing or decreasing the steam pressure in the pressurizer using the pressurizer heaters.
Pressurised channels. Channel-type reactors can be refueled under load.
Boiling water reactor (BWR)
BWRs are characterized by boiling water around the fuel rods in the lower portion of primary reactor pressure vessel. During normal operation, pressure control is accomplished by controlling the amount of steam flowing from the reactor pressure vessel to the turbine.
Pool-type reactor
Liquid metal cooled reactor. Since water is a moderator, it cannot be used as a coolant in a fast reactor. Liquid metal coolants have included sodium, NaK, lead, lead-bismuth eutectic, and in early reactors, mercury.
Sodium-cooled fast reactor
Lead-cooled fast reactor
Gas cooled reactors are cooled by a circulating inert gas, usually helium. Nitrogen and carbon dioxide have also been used. Utilization of the heat varies, depending on the reactor. Some reactors run hot enough that the gas can directly power a gas turbine. Older designs usually run the gas through a heat exchanger to make steam for a steam turbine.
Molten Salt Reactors (MSRs) are cooled by circulating a molten salt, typically a eutectic mixture of fluoride salts, such as LiF and BeF2. In a typical MSR, the coolant is also used a matrix in which the fissile material is dissolved.
[edit] Classification by generation
Generation I reactor
Generation II reactor (most current nuclear power plants)
Generation III reactor (evolutionary improvements of existing designs)
Generation IV reactor (technologies still under development)
The "Gen IV"-term was dubbed by the DOE for developing new plant types in 2000.[6] In 2003 the French CEA was the first to refer to Gen II types in Nucleonics Week; "Etienne Pochon, CEA director of nuclear industry support, outlined EPR's improved performance and enhanced safety features compared to the advanced Generation II designs on which it was based.".[7] First mentioning of Gen III was also in 2000 in conjunction with the launch of the GIF plans.
[edit] Classification by phase of fuel
Solid fueled
Fluid fueled
Aqueous homogeneous reactor
Molten salt reactor
Gas fueled
[edit] Classification by use
Electricity
Nuclear power plants
Propulsion, see nuclear propulsion
Nuclear marine propulsion
Various proposed forms of rocket propulsion
Other uses of heat
Desalination
Heat for domestic and industrial heating
Hydrogen production for use in a hydrogen economy
Production reactors for transmutation of elements
Breeder reactors. Fast breeder reactors are capable of enriching Uranium during the fission chain reaction (by converting fertile U-238 to Pu-239) which allows an operational fast reactor to generate more fissile material than it consumes. Thus, a breeder reactor, once running, can be re-fueled with natural or even depleted uranium.[8]
Creating various radioactive isotopes, such as americium for use in smoke detectors, and cobalt-60, molybdenum-99 and others, used for imaging and medical treatment.
Production of materials for nuclear weapons such as weapons-grade plutonium
Providing a source of neutron radiation (for example with the pulsed Godiva device) and positron radiation[clarification needed]) (e.g. neutron activation analysis and potassium-argon dating[clarification needed])
Research reactor: Typically reactors used for research and training, materials testing, or the production of radioisotopes for medicine and industry. These are much smaller than power reactors or those propelling ships, and many are on university campuses. There are about 280 such reactors operating, in 56 countries. Some operate with high-enriched uranium fuel, and international efforts are underway to substitute low-enriched fuel.[9]
[edit] Current technologies
There are two types of nuclear power in current use:
The Radioisotope thermoelectric generator produces heat through passive radioactive decay. Some radioisotope thermoelectric generators have been created to power space probes (for example, the Cassini probe), some lighthouses in the former Soviet Union, and some pacemakers. The heat output of these generators diminishes with time; the heat is converted to electricity utilising the thermoelectric effect.
Nuclear fission reactors produce heat through a controlled nuclear chain reaction in a critical mass of fissile material. All current nuclear power plants are critical fission reactors, which are the focus of this article. The output of fission reactors is controllable. There are several subtypes of critical fission reactors, which can be classified as Generation I, Generation II and Generation III. All reactors will be compared to the Pressurized Water Reactor (PWR), as that is the standard modern reactor design.
Diablo Canyon - a PWRPressurized Water Reactors (PWR)
These reactors use a pressure vessel to contain the nuclear fuel, control rods, moderator, and coolant. They are cooled and moderated by high pressure liquid water. The hot radioactive water that leaves the pressure vessel is looped through a steam generator, which in turn heats a secondary (non-radioactive) loop of water to steam that can run turbines. They are the majority of current reactors, and are generally considered the safest and most reliable technology currently in large scale deployment.[citation needed] This is a thermal neutron reactor design, the newest of which are the Advanced Pressurized Water Reactor and the European Pressurized Reactor. United States Naval reactors are of this type.
Laguna Verde nuclear power plant - a BWRBoiling Water Reactors (BWR)
A BWR is like a PWR without the steam generator. A boiling water reactor is cooled and moderated by water like a PWR, but at a lower pressure, which allows the water to boil inside the pressure vessel producing the steam that runs the turbines. Unlike a PWR, there is no primary and secondary loop. The thermal efficiency of these reactors can be higher, and they can be simpler, and even potentially more stable and safe. This is a thermal neutron reactor design, the newest of which are the Advanced Boiling Water Reactor and the Economic Simplified Boiling Water Reactor.
The CANDU Qinshan Nuclear Power PlantPressurized Heavy Water Reactor (PHWR)
A Canadian design, (known as CANDU) these reactors are heavy-water-cooled and -moderated Pressurized-Water reactors. Instead of using a single large pressure vessel as in a PWR, the fuel is contained in hundreds of pressure tubes. These reactors are fueled with natural uranium and are thermal neutron reactor designs. PHWRs can be refueled while at full power, which makes them very efficient in their use of uranium (it allows for precise flux control in the core). CANDU PHWR's have been built in Canada, Argentina, China, India (pre-NPT), Pakistan (pre-NPT), Romania, and South Korea. India also operates a number of PHWR's, often termed 'CANDU-derivatives', built after the Government of Canada halted nuclear dealings with India following the 1974 Smiling Buddha nuclear weapon test.
The Ignalina Nuclear Power Plant - a still operating RBMKReaktor Bolshoy Moshchnosti Kanalniy (High Power Channel Reactor) (RBMK)
A Soviet Union design, built to produce plutonium as well as power. RBMKs are water cooled with a graphite moderator. RBMKs are in some respects similar to CANDU in that they are refuelable during power operation and employ a pressure tube design instead of a PWR-style pressure vessel. However, unlike CANDU they are very unstable and too large to have containment buildings, making them dangerous in the case of an accident. A series of critical safety flaws have also been identified with the RBMK design, though some of these were corrected following the Chernobyl accident. RBMK reactors are generally considered one of the most dangerous reactor designs in use. The Chernobyl plant had four RBMK reactors.
The Torness nuclear power station - an AGRGas Cooled Reactor (GCR) and Advanced Gas Cooled Reactor (AGR)
These are generally graphite moderated and CO2 cooled. They can have a high thermal efficiency compared with PWRs due to higher operating temperatures. There are a number of operating reactors of this design, mostly in the United Kingdom, where the concept was developed. Older designs (i.e. Magnox stations) are either shut down or will be in the near future. However, the AGCRs have an anticipated life of a further 10 to 20 years. This is a thermal neutron reactor design. Decommissioning costs can be high due to large volume of reactor core.
Liquid Metal Fast Breeder Reactor (LMFBR)
This is a reactor design that is cooled by liquid metal, totally unmoderated, and produces more fuel than it consumes. They are said to "breed" fuel, because they produce fissionable fuel during operation because of neutron capture. These reactors can function much like a PWR in terms of efficiency, and do not require much high pressure containment, as the liquid metal does not need to be kept at high pressure, even at very high temperatures. Superphénix in France was a reactor of this type, as was Fermi-I in the United States. The Monju reactor in Japan suffered a sodium leak in 1995 and was approved for restart in 2008. All three use/used liquid sodium. These reactors are fast neutron, not thermal neutron designs. These reactors come in two types:
The Superphenix, one of the few FBRsLead cooled
Using lead as the liquid metal provides excellent radiation shielding, and allows for operation at very high temperatures. Also, lead is (mostly) transparent to neutrons, so fewer neutrons are lost in the coolant, and the coolant does not become radioactive. Unlike sodium, lead is mostly inert, so there is less risk of explosion or accident, but such large quantities of lead may be problematic from toxicology and disposal points of view. Often a reactor of this type would use a lead-bismuth eutectic mixture. In this case, the bismuth would present some minor radiation problems, as it is not quite as transparent to neutrons, and can be transmuted to a radioactive isotope more readily than lead.
Sodium cooled
Most LMFBRs are of this type. The sodium is relatively easy to obtain and work with, and it also manages to actually prevent corrosion on the various reactor parts immersed in it. However, sodium explodes violently when exposed to water, so care must be taken, but such explosions wouldn't be vastly more violent than (for example) a leak of superheated fluid from a SCWR or PWR. EBR-I, the first reactor to have a core meltdown, was of this type.
Aqueous Homogeneous Reactor (AHR)
These reactors use soluble nuclear salts dissolved in water and mixed with a coolant and a neutron moderator.
[edit] Future and developing technologies
[edit] Advanced reactors
More than a dozen advanced reactor designs are in various stages of development.[10] Some are evolutionary from the PWR, BWR and PHWR designs above, some are more radical departures. The former include the Advanced Boiling Water Reactor (ABWR), two of which are now operating with others under construction, and the planned passively safe ESBWR and AP1000 units (see Nuclear Power 2010 Program).
The Integral Fast Reactor was built, tested and evaluated during the 1980s and then retired under the Clinton administration in the 1990s due to nuclear non-proliferation policies of the administration. Recycling spent fuel is the core of its design and it therefore produces only a fraction of the waste of current reactors.[11]
The Pebble Bed Reactor, a High Temperature Gas Cooled Reactor (HTGCR), is designed so high temperatures reduce power output by doppler broadening of the fuel's neutron cross-section. It uses ceramic fuels so its safe operating temperatures exceed the power-reduction temperature range. Most designs are cooled by inert helium. Helium is not subject to steam explosions, resists neutron absorption leading to radioactivity, and does not dissolve contaminants that can become radioactive. Typical designs have more layers (up to 7) of passive containment than light water reactors (usually 3). A unique feature that may aid safety is that the fuel-balls actually form the core's mechanism, and are replaced one-by-one as they age. The design of the fuel makes fuel reprocessing expensive.
SSTAR, Small, Sealed, Transportable, Autonomous Reactor is being primarily researched and developed in the US, intended as a fast breeder reactor that is passively safe and could be remotely shut down in case the suspicion arises that it is being tampered with.
The Clean And Environmentally Safe Advanced Reactor (CAESAR) is a nuclear reactor concept that uses steam as a moderator - this design is still in development.
Subcritical reactors are designed to be safer and more stable, but pose a number of engineering and economic difficulties. One example is the Energy amplifier.
Thorium based reactors. It is possible to convert Thorium-232 into U-233 in reactors specially designed for the purpose. In this way, Thorium, which is more plentiful than uranium, can be used to breed U-233 nuclear fuel. U-233 is also believed to have favourable nuclear properties as compared to traditionally used U-235, including better neutron economy and lower production of long lived transuranic waste.
Advanced Heavy Water Reactor — A proposed heavy water moderated nuclear power reactor that will be the next generation design of the PHWR type. Under development in the Bhabha Atomic Research Centre (BARC).
KAMINI — A unique reactor using Uranium-233 isotope for fuel. Built by BARC and IGCAR Uses thorium.
India is also building a bigger scale FBTR or fast breeder thorium reactor to harness the power with the use of thorium.
[edit] Generation IV reactors
Generation IV reactors are a set of theoretical nuclear reactor designs currently being researched. These designs are generally not expected to be available for commercial construction before 2030. Current reactors in operation around the world are generally considered second- or third-generation systems, with the first-generation systems having been retired some time ago. Research into these reactor types was officially started by the Generation IV International Forum (GIF) based on eight technology goals. The primary goals being to improve nuclear safety, improve proliferation resistance, minimize waste and natural resource utilization, and to decrease the cost to build and run such plants.[12]
Gas cooled fast reactor
Lead cooled fast reactor
Molten salt reactor
Sodium-cooled fast reactor
Supercritical water reactor
Very high temperature reactor
[edit] Generation V+ reactors
Designs which are theoretically possible, but which are not being actively considered or researched at present. Though such reactors could be built with current or near term technology, they trigger little interest for reasons of economics, practicality, or safety.
Liquid Core reactor. A closed loop liquid core nuclear reactor, where the fissile material is molten uranium cooled by a working gas pumped in through holes in the base of the containment vessel.
Gas core reactor. A closed loop version of the nuclear lightbulb rocket, where the fissile material is gaseous uranium-hexafluoride contained in a fused silica vessel. A working gas (such as hydrogen) would flow around this vessel and absorb the UV light produced by the reaction. In theory, using UF6 as a working fuel directly (rather than as a stage to one, as is done now) would mean lower processing costs, and very small reactors. In practice, running a reactor at such high power densities would probably produce unmanageable neutron flux.
Gas core EM reactor. As in the Gas Core reactor, but with photovoltaic arrays converting the UV light directly to electricity.
Fission fragment reactor
[edit] Fusion reactors
Controlled nuclear fusion could in principle be used in fusion power plants to produce power without the complexities of handling actinides, but significant scientific and technical obstacles remain. Several fusion reactors have been built, but as yet none has 'produced' more thermal energy than electrical energy consumed. Despite research having started in the 1950s, no commercial fusion reactor is expected before 2050. The ITER project is currently leading the effort to commercialize fusion power.
[edit] Nuclear fuel cycle
Main article: Nuclear fuel cycle
Thermal reactors generally depend on refined and enriched uranium. Some nuclear reactors can operate with a mixture of plutonium and uranium (see MOX). The process by which uranium ore is mined, processed, enriched, used, possibly reprocessed and disposed of is known as the nuclear fuel cycle.
Under 1% of the uranium found in nature is the easily fissionable U-235 isotope and as a result most reactor designs require enriched fuel. Enrichment involves increasing the percentage of U-235 and is usually done by means of gaseous diffusion or gas centrifuge. The enriched result is then converted into uranium dioxide powder, which is pressed and fired into pellet form. These pellets are stacked into tubes which are then sealed and called fuel rods. Many of these fuel rods are used in each nuclear reactor.
Most BWR and PWR commercial reactors use uranium enriched to about 4% U-235, and some commercial reactors with a high neutron economy do not require the fuel to be enriched at all (that is, they can use natural uranium). According to the International Atomic Energy Agency there are at least 100 research reactors in the world fueled by highly enriched (weapons-grade/90% enrichment uranium). Theft risk of this fuel (potentially used in the production of a nuclear weapon) has led to campaigns advocating conversion of this type of reactor to low-enrichment uranium (which poses less threat of proliferation).[13]
It should be noted that fissile U-235 and non-fissile but fissionable and fertile U-238 are both used in the fission process. U-235 is fissionable by thermal (i.e. slow-moving) neutrons. A thermal neutron is one which is moving about the same speed as the atoms around it. Since all atoms vibrate proportionally to their absolute temperature, a thermal neutron has the best opportunity to fission U-235 when it is moving at this same vibrational speed. On the other hand, U-238 is more likely to capture a neutron when the neutron is moving very fast. This U-239 atom will soon decay into plutonium-239, which is another fuel. Pu-239 is a viable fuel and must be accounted for even when a highly enriched uranium fuel is used. Plutonium fissions will dominate the U-235 fissions in some reactors, especially after the initial loading of U-235 is spent. Plutonium is fissionable with both fast and thermal neutrons, which make it ideal for either nuclear reactors or nuclear bombs.
Most reactor designs in existence are thermal reactors and typically use water as a neutron moderator (moderator means that it slows down the neutron to a thermal speed) and as a coolant. But in a fast breeder reactor, some other kind of coolant is used which will not moderate or slow the neutrons down much. This enables fast neutrons to dominate, which can effectively be used to constantly replenish the fuel supply. By merely placing cheap unenriched uranium into such a core, the non-fissionable U-238 will be turned into Pu-239, "breeding" fuel.
[edit] Fueling of nuclear reactors
The amount of energy in the reservoir of nuclear fuel is frequently expressed in terms of "full-power days," which is the number of 24-hour periods (days) a reactor is scheduled for operation at full power output for the generation of heat energy. The number of full-power days in a reactor's operating cycle (between refueling outage times) is related to the amount of fissile uranium-235 (U-235) contained in the fuel assemblies at the beginning of the cycle. A higher percentage of U-235 in the core at the beginning of a cycle will permit the reactor to be run for a greater number of full-power days.
At the end of the operating cycle, the fuel in some of the assemblies is "spent" and is discharged and replaced with new (fresh) fuel assemblies, although in practice it is the buildup of reaction poisons in nuclear fuel that determines the lifetime of nuclear fuel in a reactor. Long before all possible fission has taken place, the buildup of long-lived neutron absorbing fission byproducts impedes the chain reaction. The fraction of the reactor's fuel core replaced during refueling is typically one-fourth for a boiling-water reactor and one-third for a pressurized-water reactor.
Not all reactors need to be shut down for refueling; for example, pebble bed reactors, RBMK reactors, molten salt reactors, Magnox, AGR and CANDU reactors allow fuel to be shifted through the reactor while it is running. In a CANDU reactor, this also allows individual fuel elements to be situated within the reactor core that are best suited to the amount of U-235 in the fuel element.
The amount of energy extracted from nuclear fuel is called its burnup, which is expressed in terms of the heat energy produced per initial unit of fuel weight. Burn up is commonly expressed as megawatt days thermal per metric ton of initial heavy metal.
[edit] Safety
Main article: Nuclear safety
See also: Nuclear safety in the U.S.
[edit] History - Early reactors
The concept of a nuclear chain reaction was first realized by Hungarian scientist Leó Szilárd in 1933. He filed a patent for his idea of a simple nuclear reactor the following year.[14]
The first artificial nuclear reactor, Chicago Pile-1, was constructed at the University of Chicago by a team led by Enrico Fermi in 1942. It achieved criticality on December 2, 1942[15] at 3:25 PM. The reactor support structure was made of wood, which supported a pile of graphite blocks, embedded in which was natural Uranium-oxide 'pseudospheres' or 'briquettes'. Inspiration for such a reactor was provided by the discovery by Lise Meitner, Fritz Strassman and Otto Hahn in 1938 that bombardment of Uranium with neutrons (provided by an Alpha-on-Beryllium fusion reaction, a "neutron howitzer") produced a Barium residue, which they reasoned was created by the fissioning of the Uranium nuclei. Subsequent studies revealed that several neutrons were also released during the fissioning, making available the opportunity for a chain reaction. Shortly after the discovery of fission, Hitler's Germany invaded Poland in 1939, starting World War II in Europe, and all such research became militarily classified. On August 2, 1939 Albert Einstein wrote a letter to President Franklin D. Roosevelt suggesting that the discovery of Uranium's fission could lead to the development of "extremely powerful bombs of a new type", giving impetus to the study of reactors and fission.
Soon after the Chicago Pile, the U.S. military developed nuclear reactors for the Manhattan Project starting in 1943. The primary purpose for these reactors was the mass production of plutonium (primarily at the Hanford Site) for nuclear weapons. Fermi and Leo Szilard applied for a patent on reactors on 19 December, 1944. Its issuance was delayed for 10 years because of wartime secrecy.[16]
"World's first nuclear power plant" is the claim made by signs at the site of the EBR-I, which is now a museum near Arco, Idaho. This experimental LMFBR operated by the U.S. Atomic Energy Commission produced 0.8 kW in a test on December 20, 1951 [17] and 100 kW (electrical) the following day,[18] having a design output of 200 kW (electrical).
Besides the military uses of nuclear reactors, there were political reasons to pursue civilian use of atomic energy. U.S. President Dwight Eisenhower made his famous Atoms for Peace speech to the UN General Assembly on December 8, 1953. This diplomacy led to the dissemination of reactor technology to U.S. institutions and worldwide.
The first nuclear power plant built for civil purposes was the AM-1 Obninsk Nuclear Power Plant, launched on June 27, 1954 in the Soviet Union. It produced around 5 MW (electrical).
After World War II, the U.S. military sought other uses for nuclear reactor technology. Research by the Army and the Air Force never came to fruition; however, the U.S. Navy succeeded when they steamed the USS Nautilus (SSN-571) on nuclear power January 17, 1955.
The first commercial nuclear power station, Calder Hall in Sellafield, England was opened in 1956 with an initial capacity of 50 MW (later 200 MW) [19] [20].
The first portable nuclear reactor "Alco PM-2A" used to generate electrical power (2 MW) for Camp Century from 1960.[21]
[edit] Natural nuclear reactors
Main article: Natural nuclear fission reactor
Although nuclear fission reactors are often thought of as being solely a product of modern technology, the first nuclear fission reactors were in fact naturally occurring. A natural nuclear fission reactor can occur under certain circumstances that mimic the conditions in a constructed reactor.[22] Fifteen natural fission reactors have so far been found in three separate ore deposits at the Oklo mine in Gabon, West Africa. First discovered in 1972 by French physicist Francis Perrin, they are collectively known as the Oklo Fossil Reactors. Self-sustaining nuclear fission reactions took place in these reactors approximately 1.5 billion years ago, and ran for a few hundred thousand years, averaging 100 kW of power output during that time.[23] The concept of a natural nuclear reactor was theorized as early as 1956 by Paul Kuroda at the University of Arkansas[24][25]
Such reactors can no longer form on Earth: radioactive decay over this immense time span has reduced the proportion of U-235 in naturally occurring uranium to below the amount required to sustain a chain reaction.
The natural nuclear reactors formed when a uranium-rich mineral deposit became inundated with groundwater that acted as a neutron moderator, and a strong chain reaction took place. The water moderator would boil away as the reaction increased, slowing it back down again and preventing a meltdown. The fission reaction was sustained for hundreds of thousands of years.
These natural reactors are extensively studied by scientists interested in geologic radioactive waste disposal. They offer a case study of how radioactive isotopes migrate through the earth's crust. This is a significant area of controversy as opponents of geologic waste disposal fear that isotopes from stored waste could end up in water supplies or be carried into the environment.
Monday, May 11, 2009
Nuclear physics
Nuclear physics is the field of physics that studies the building blocks and interactions of atomic nuclei.
The most commonly known applications of nuclear physics are nuclear power and nuclear weapons, but the research field is also the basis for a far wider range of applications, including in the medical sector (nuclear medicine, magnetic resonance imaging), in materials engineering (ion implantation) and in archaeology (radiocarbon dating).
The field of particle physics evolved out of nuclear physics and, for this reason, has been included under the same term in earlier times.
History
The discovery of the electron by J. J. Thomson was the first indication that the atom had internal structure. At the turn of the 20th century the accepted model of the atom was J. J. Thomson's "plum pudding" model in which the atom was a large positively charged ball with small negatively charged electrons embedded inside of it. By the turn of the century physicists had also discovered three types of radiation coming from atoms, which they named alpha, beta, and gamma radiation. Experiments in 1911 by Lise Meitner and Otto Hahn, and by James Chadwick in 1914 discovered that the beta decay spectrum was continuous rather than discrete. That is, electrons were ejected from the atom with a range of energies, rather than the discrete amounts of energies that were observed in gamma and alpha decays. This was a problem for nuclear physics at the time, because it indicated that energy was not conserved in these decays.
In 1905, Albert Einstein formulated the idea of mass–energy equivalence. While the work on radioactivity by Becquerel, Pierre and Marie Curie predates this, an explanation of the source of the energy of radioactivity would have to wait for the discovery that the nucleus itself was composed of smaller constituents, the nucleons.
[edit] Rutherford's team discovers the nucleus
In 1906 Ernest Rutherford published "Radiation of the α Particle from Radium in passing through Matter"[1]. Geiger expanded on this work in a communication to the Royal Society[2] with experiments he and Rutherford had done passing α particles through air, aluminum foil and gold leaf. More work was published in 1909 by Geiger and Marsden[3] and further greatly expanded work was published in 1910 by Geiger,[4] In 1911-2 Rutherford went before the Royal Society to explain the experiments and propound the new theory of the atomic nucleus as we now understand it.
The key experiment behind this announcement happened in 1909 as Ernest Rutherford's team performed a remarkable experiment in which Hans Geiger and Ernest Marsden under his supervision fired alpha particles (helium nuclei) at a thin film of gold foil. The plum pudding model predicted that the alpha particles should come out of the foil with their trajectories being at most slightly bent. Rutherford had the idea to instruct his team to look for something that shocked him to actually observe: a few particles were scattered through large angles, even completely backwards, in some cases. The discovery, beginning with Rutherford's analysis of the data in 1911, eventually led to the Rutherford model of the atom, in which the atom has a very small, very dense nucleus containing most of its mass, and consisting of heavy positively charged particles with embedded electrons in order to balance out the charge (since the neutron was unknown). As an example, in this model (which is not the modern one) nitrogen-14 consisted of a nucleus with 14 protons and 7 electrons (21 total particles), and the nucleus was surrounded by 7 more orbiting electrons.
The Rutherford model worked quite well until studies of nuclear spin were carried out by Franco Rasetti at the California Institute of Technology in 1929. By 1925 it was known that protons and electrons had a spin of 1/2, and in the Rutherford model of nitrogen-14, 20 of the total 21 nuclear particles should have paired up to cancel each other's spin, and the final odd particle should have left the nucleus with a net spin of 1/2. Rasetti discovered, however, that nitrogen-14 has a spin of 1.
[edit] James Chadwick discovers the neutron
In 1932 Chadwick realized that radiation that had been observed by Walther Bothe, Herbert L. Becker, Irène and Frédéric Joliot-Curie was actually due to a neutral particle of about the same mass as the proton, that he called the neutron (following a suggestion about the need for such a particle, by Rutherford). In the same year Dmitri Ivanenko suggested that neutrons were in fact spin 1/2 particles and that the nucleus contained neutrons to explain the mass not due to protons, and that there were no electrons in the nucleus-- only protons and neutrons. The neutron spin immediately solved the problem of the spin of nitrogen-14, as the one unpaired proton and one unpaired neutron in this model, each contribute a spin of 1/2 in the same direction, for a final total spin of 1.
With the discovery of the neutron, scientists at last could calculate what fraction of binding energy each nucleus had, from comparing the nuclear mass with that of the protons and neutrons which composed it. Differences between nuclear masses calculated in this way, and when nuclear reactions were measured, were found to agree with Einstein's calculation of the equivalence of mass and energy to high accuracy (within 1% as of in 1934).
[edit] Yukawa's meson postulated to bind nuclei
In 1935 Hideki Yukawa proposed the first significant theory of the strong force to explain how the nucleus holds together. In the Yukawa interaction a virtual particle, later called a meson, mediated a force between all nucleons, including protons and neutrons. This force explained why nuclei did not disintegrate under the influence of proton repulsion, and it also gave an explanation of why the attractive strong force had a more limited range than the electromagnetic repulsion between protons. Later, the discovery of the pi meson showed it to have the properties of Yukawa's particle.
With Yukawa's papers, the modern model of the atom was complete. The center of the atom contains a tight ball of neutrons and protons, which is held together by the strong nuclear force, unless it is too large. Unstable nuclei may undergo alpha decay, in which they emit an energetic helium nucleus, or beta decay, in which they eject an electron (or positron). After one of these decays the resultant nucleus may be left in an excited state, and in this case it decays to its ground state by emitting high energy photons (gamma decay).
The study of the strong and weak nuclear forces (the latter explained by Enrico Fermi via Fermi's interaction in 1934) led physicists to collide nuclei and electrons at ever higher energies. This research became the science of particle physics, the crown jewel of which is the standard model of particle physics which unifies the strong, weak, and electromagnetic forces.
[edit] Modern nuclear physics
Main articles: Liquid-drop model and Shell model
A heavy nucleus can contain hundreds of nucleons which means that with some approximation it can be treated as a classical system, rather than a quantum-mechanical one. In the resulting liquid-drop model, the nucleus has an energy which arises partly from surface tension and partly from electrical repulsion of the protons. The liquid-drop model is able to reproduce many features of nuclei, including the general trend of binding energy with respect to mass number, as well as the phenomenon of nuclear fission.
Superimposed on this classical picture, however, are quantum-mechanical effects, which can be described using the nuclear shell model, developed in large part by Maria Goeppert-Mayer. Nuclei with certain numbers of neutrons and protons (the magic numbers 2, 8, 20, 50, 82, 126, ...) are particularly stable, because their shells are filled.
Other more complicated models for the nucleus have also been proposed, such as the interacting boson model, in which pairs of neutrons and protons interact as bosons, analogously to Cooper pairs of electrons.
Much of current research in nuclear physics relates to the study of nuclei under extreme conditions such as high spin and excitation energy. Nuclei may also have extreme shapes (similar to that of Rugby balls) or extreme neutron-to-proton ratios. Experimenters can create such nuclei using artificially induced fusion or nucleon transfer reactions, employing ion beams from an accelerator. Beams with even higher energies can be used to create nuclei at very high temperatures, and there are signs that these experiments have produced a phase transition from normal nuclear matter to a new state, the quark-gluon plasma, in which the quarks mingle with one another, rather than being segregated in triplets as they are in neutrons and protons.
[edit] Modern topics in nuclear physics
[edit] Spontaneous changes from one nuclide to another: nuclear decay
Main article: Radioactivity
There are 80 elements which have at least one stable isotope (defined as isotopes never observed to decay), and in total there are about 256 such stable isotopes. However, there are thousands more well-characterized isotopes which are unstable. These radioisotopes may be unstable and decay in all timescales ranging from fractions of a second to weeks, years, or many billions of years.
For example, if a nucleus has too few or too many neutrons it may be unstable, and will decay after some period of time. For example, in a process called beta decay a nitrogen-16 atom (7 protons, 9 neutrons) is converted to an oxygen-16 atom (8 protons, 8 neutrons) within a few seconds of being created. In this decay a neutron in the nitrogen nucleus is turned into a proton and an electron and antineutrino, by the weak nuclear force. The element is transmuted to another element in the process, because while it previously had seven protons (which makes it nitrogen) it now has eight (which makes it oxygen).
In alpha decay the radioactive element decays by emitting a helium nucleus (2 protons and 2 neutrons), giving another element, plus helium-4. In many cases this process continues through several steps of this kind, including other types of decays, until a stable element is formed.
In gamma decay, a nucleus decays from an excited state into a lower state by emitting a gamma ray. The element is not changed in the process.
Other more exotic decays are possible (see the main article). For example, in internal conversion decay, the energy from an excited nucleus may be used to eject one of the inner orbital electrons from the atom, in a process which produces high speed electrons, but is not beta decay, and (unlike beta decay) does not transmute one element to another.
[edit] Nuclear fusion
Main article: Nuclear fusion
When two light nuclei come into very close contact with each other it is possible for the strong force to fuse the two together. It takes a great deal of energy to push the nuclei close enough together for the strong or nuclear forces to have an effect, so the process of nuclear fusion can only take place at very high temperatures or high densities. Once the nuclei are close enough together the strong force overcomes their electromagnetic repulsion and squishes them into a new nucleus. A very large amount of energy is released when light nuclei fuse together because the binding energy per nucleon increases with mass number up until nickel-62. Stars like our sun are powered by the fusion of four protons into a helium nucleus, two positrons, and two neutrinos. The uncontrolled fusion of hydrogen into helium is known as thermonuclear runaway. Research to find an economically viable method of using energy from a controlled fusion reaction is currently being undertaken by various research establishments (see JET and ITER).
[edit] Nuclear fission
Main article: Nuclear fission
For nuclei heavier than nickel-62 the binding energy per nucleon decreases with the mass number. It is therefore possible for energy to be released if a heavy nucleus breaks apart into two lighter ones. This splitting of atoms is known as nuclear fission.
The process of alpha decay may be thought of as a special type of spontaneous nuclear fission. This process produces a highly asymmetrical fission because the four particles which make up the alpha particle are especially tightly bound to each other, making production of this nucleus in fission particularly likely.
For certain of the heaviest nuclei which produce neutrons on fission, and which also easily absorb neutrons to initiate fission, a self-igniting type of neutron-initiated fission can be obtained, in a so-called chain reaction. (Chain reactions were known in chemistry before physics, and in fact many familiar processes like fires and chemical explosions are chemical chain reactions.) The fission or "nuclear" chain-reaction, using fission-produced neutrons, is the source of energy for nuclear power plants and fission type nuclear bombs such as the two that the United States used against Hiroshima and Nagasaki at the end of World War II. Heavy nuclei such as uranium and thorium may undergo spontaneous fission, but they are much more likely to undergo decay by alpha decay.
For a neutron-initiated chain-reaction to occur, there must be a critical mass of the element present in a certain space under certain conditions (these conditions slow and conserve neutrons for the reactions). There is one known example of a natural nuclear fission reactor, which was active in two regions of Oklo, Gabon, Africa, over 1.5 billion years ago. Measurements of natural neutrino emission have demonstrated that around half of the heat emanating from the Earth's core results from radioactive decay. However, it is not known if any of this results from fission chain-reactions.
[edit] Production of heavy elements
As the Universe cooled after the big bang it eventually became possible for particles as we know them to exist. The most common particles created in the big bang which are still easily observable to us today were protons (hydrogen) and electrons (in equal numbers). Some heavier elements were created as the protons collided with each other, but most of the heavy elements we see today were created inside of stars during a series of fusion stages, such as the proton-proton chain, the CNO cycle and the triple-alpha process. Progressively heavier elements are created during the evolution of a star. Since the binding energy per nucleon peaks around iron, energy is only released in fusion processes occurring below this point. Since the creation of heavier nuclei by fusion costs energy, nature resorts to the process of neutron capture. Neutrons (due to their lack of charge) are readily absorbed by a nucleus. The heavy elements are created by either a slow neutron capture process (the so-called s process) or by the rapid, or r process. The s process occurs in thermally pulsing stars (called AGB, or asymptotic giant branch stars) and takes hundreds to thousands of years to reach the heaviest elements of lead and bismuth. The r process is thought to occur in supernova explosions because the conditions of high temperature, high neutron flux and ejected matter are present. These stellar conditions make the successive neutron captures very fast, involving very neutron-rich species which then beta-decay to heavier elements, especially at the so-called waiting points that correspond to more stable nuclides with closed neutron shells (magic numbers). The r process duration is typically in the range of a few seconds.
The most commonly known applications of nuclear physics are nuclear power and nuclear weapons, but the research field is also the basis for a far wider range of applications, including in the medical sector (nuclear medicine, magnetic resonance imaging), in materials engineering (ion implantation) and in archaeology (radiocarbon dating).
The field of particle physics evolved out of nuclear physics and, for this reason, has been included under the same term in earlier times.
History
The discovery of the electron by J. J. Thomson was the first indication that the atom had internal structure. At the turn of the 20th century the accepted model of the atom was J. J. Thomson's "plum pudding" model in which the atom was a large positively charged ball with small negatively charged electrons embedded inside of it. By the turn of the century physicists had also discovered three types of radiation coming from atoms, which they named alpha, beta, and gamma radiation. Experiments in 1911 by Lise Meitner and Otto Hahn, and by James Chadwick in 1914 discovered that the beta decay spectrum was continuous rather than discrete. That is, electrons were ejected from the atom with a range of energies, rather than the discrete amounts of energies that were observed in gamma and alpha decays. This was a problem for nuclear physics at the time, because it indicated that energy was not conserved in these decays.
In 1905, Albert Einstein formulated the idea of mass–energy equivalence. While the work on radioactivity by Becquerel, Pierre and Marie Curie predates this, an explanation of the source of the energy of radioactivity would have to wait for the discovery that the nucleus itself was composed of smaller constituents, the nucleons.
[edit] Rutherford's team discovers the nucleus
In 1906 Ernest Rutherford published "Radiation of the α Particle from Radium in passing through Matter"[1]. Geiger expanded on this work in a communication to the Royal Society[2] with experiments he and Rutherford had done passing α particles through air, aluminum foil and gold leaf. More work was published in 1909 by Geiger and Marsden[3] and further greatly expanded work was published in 1910 by Geiger,[4] In 1911-2 Rutherford went before the Royal Society to explain the experiments and propound the new theory of the atomic nucleus as we now understand it.
The key experiment behind this announcement happened in 1909 as Ernest Rutherford's team performed a remarkable experiment in which Hans Geiger and Ernest Marsden under his supervision fired alpha particles (helium nuclei) at a thin film of gold foil. The plum pudding model predicted that the alpha particles should come out of the foil with their trajectories being at most slightly bent. Rutherford had the idea to instruct his team to look for something that shocked him to actually observe: a few particles were scattered through large angles, even completely backwards, in some cases. The discovery, beginning with Rutherford's analysis of the data in 1911, eventually led to the Rutherford model of the atom, in which the atom has a very small, very dense nucleus containing most of its mass, and consisting of heavy positively charged particles with embedded electrons in order to balance out the charge (since the neutron was unknown). As an example, in this model (which is not the modern one) nitrogen-14 consisted of a nucleus with 14 protons and 7 electrons (21 total particles), and the nucleus was surrounded by 7 more orbiting electrons.
The Rutherford model worked quite well until studies of nuclear spin were carried out by Franco Rasetti at the California Institute of Technology in 1929. By 1925 it was known that protons and electrons had a spin of 1/2, and in the Rutherford model of nitrogen-14, 20 of the total 21 nuclear particles should have paired up to cancel each other's spin, and the final odd particle should have left the nucleus with a net spin of 1/2. Rasetti discovered, however, that nitrogen-14 has a spin of 1.
[edit] James Chadwick discovers the neutron
In 1932 Chadwick realized that radiation that had been observed by Walther Bothe, Herbert L. Becker, Irène and Frédéric Joliot-Curie was actually due to a neutral particle of about the same mass as the proton, that he called the neutron (following a suggestion about the need for such a particle, by Rutherford). In the same year Dmitri Ivanenko suggested that neutrons were in fact spin 1/2 particles and that the nucleus contained neutrons to explain the mass not due to protons, and that there were no electrons in the nucleus-- only protons and neutrons. The neutron spin immediately solved the problem of the spin of nitrogen-14, as the one unpaired proton and one unpaired neutron in this model, each contribute a spin of 1/2 in the same direction, for a final total spin of 1.
With the discovery of the neutron, scientists at last could calculate what fraction of binding energy each nucleus had, from comparing the nuclear mass with that of the protons and neutrons which composed it. Differences between nuclear masses calculated in this way, and when nuclear reactions were measured, were found to agree with Einstein's calculation of the equivalence of mass and energy to high accuracy (within 1% as of in 1934).
[edit] Yukawa's meson postulated to bind nuclei
In 1935 Hideki Yukawa proposed the first significant theory of the strong force to explain how the nucleus holds together. In the Yukawa interaction a virtual particle, later called a meson, mediated a force between all nucleons, including protons and neutrons. This force explained why nuclei did not disintegrate under the influence of proton repulsion, and it also gave an explanation of why the attractive strong force had a more limited range than the electromagnetic repulsion between protons. Later, the discovery of the pi meson showed it to have the properties of Yukawa's particle.
With Yukawa's papers, the modern model of the atom was complete. The center of the atom contains a tight ball of neutrons and protons, which is held together by the strong nuclear force, unless it is too large. Unstable nuclei may undergo alpha decay, in which they emit an energetic helium nucleus, or beta decay, in which they eject an electron (or positron). After one of these decays the resultant nucleus may be left in an excited state, and in this case it decays to its ground state by emitting high energy photons (gamma decay).
The study of the strong and weak nuclear forces (the latter explained by Enrico Fermi via Fermi's interaction in 1934) led physicists to collide nuclei and electrons at ever higher energies. This research became the science of particle physics, the crown jewel of which is the standard model of particle physics which unifies the strong, weak, and electromagnetic forces.
[edit] Modern nuclear physics
Main articles: Liquid-drop model and Shell model
A heavy nucleus can contain hundreds of nucleons which means that with some approximation it can be treated as a classical system, rather than a quantum-mechanical one. In the resulting liquid-drop model, the nucleus has an energy which arises partly from surface tension and partly from electrical repulsion of the protons. The liquid-drop model is able to reproduce many features of nuclei, including the general trend of binding energy with respect to mass number, as well as the phenomenon of nuclear fission.
Superimposed on this classical picture, however, are quantum-mechanical effects, which can be described using the nuclear shell model, developed in large part by Maria Goeppert-Mayer. Nuclei with certain numbers of neutrons and protons (the magic numbers 2, 8, 20, 50, 82, 126, ...) are particularly stable, because their shells are filled.
Other more complicated models for the nucleus have also been proposed, such as the interacting boson model, in which pairs of neutrons and protons interact as bosons, analogously to Cooper pairs of electrons.
Much of current research in nuclear physics relates to the study of nuclei under extreme conditions such as high spin and excitation energy. Nuclei may also have extreme shapes (similar to that of Rugby balls) or extreme neutron-to-proton ratios. Experimenters can create such nuclei using artificially induced fusion or nucleon transfer reactions, employing ion beams from an accelerator. Beams with even higher energies can be used to create nuclei at very high temperatures, and there are signs that these experiments have produced a phase transition from normal nuclear matter to a new state, the quark-gluon plasma, in which the quarks mingle with one another, rather than being segregated in triplets as they are in neutrons and protons.
[edit] Modern topics in nuclear physics
[edit] Spontaneous changes from one nuclide to another: nuclear decay
Main article: Radioactivity
There are 80 elements which have at least one stable isotope (defined as isotopes never observed to decay), and in total there are about 256 such stable isotopes. However, there are thousands more well-characterized isotopes which are unstable. These radioisotopes may be unstable and decay in all timescales ranging from fractions of a second to weeks, years, or many billions of years.
For example, if a nucleus has too few or too many neutrons it may be unstable, and will decay after some period of time. For example, in a process called beta decay a nitrogen-16 atom (7 protons, 9 neutrons) is converted to an oxygen-16 atom (8 protons, 8 neutrons) within a few seconds of being created. In this decay a neutron in the nitrogen nucleus is turned into a proton and an electron and antineutrino, by the weak nuclear force. The element is transmuted to another element in the process, because while it previously had seven protons (which makes it nitrogen) it now has eight (which makes it oxygen).
In alpha decay the radioactive element decays by emitting a helium nucleus (2 protons and 2 neutrons), giving another element, plus helium-4. In many cases this process continues through several steps of this kind, including other types of decays, until a stable element is formed.
In gamma decay, a nucleus decays from an excited state into a lower state by emitting a gamma ray. The element is not changed in the process.
Other more exotic decays are possible (see the main article). For example, in internal conversion decay, the energy from an excited nucleus may be used to eject one of the inner orbital electrons from the atom, in a process which produces high speed electrons, but is not beta decay, and (unlike beta decay) does not transmute one element to another.
[edit] Nuclear fusion
Main article: Nuclear fusion
When two light nuclei come into very close contact with each other it is possible for the strong force to fuse the two together. It takes a great deal of energy to push the nuclei close enough together for the strong or nuclear forces to have an effect, so the process of nuclear fusion can only take place at very high temperatures or high densities. Once the nuclei are close enough together the strong force overcomes their electromagnetic repulsion and squishes them into a new nucleus. A very large amount of energy is released when light nuclei fuse together because the binding energy per nucleon increases with mass number up until nickel-62. Stars like our sun are powered by the fusion of four protons into a helium nucleus, two positrons, and two neutrinos. The uncontrolled fusion of hydrogen into helium is known as thermonuclear runaway. Research to find an economically viable method of using energy from a controlled fusion reaction is currently being undertaken by various research establishments (see JET and ITER).
[edit] Nuclear fission
Main article: Nuclear fission
For nuclei heavier than nickel-62 the binding energy per nucleon decreases with the mass number. It is therefore possible for energy to be released if a heavy nucleus breaks apart into two lighter ones. This splitting of atoms is known as nuclear fission.
The process of alpha decay may be thought of as a special type of spontaneous nuclear fission. This process produces a highly asymmetrical fission because the four particles which make up the alpha particle are especially tightly bound to each other, making production of this nucleus in fission particularly likely.
For certain of the heaviest nuclei which produce neutrons on fission, and which also easily absorb neutrons to initiate fission, a self-igniting type of neutron-initiated fission can be obtained, in a so-called chain reaction. (Chain reactions were known in chemistry before physics, and in fact many familiar processes like fires and chemical explosions are chemical chain reactions.) The fission or "nuclear" chain-reaction, using fission-produced neutrons, is the source of energy for nuclear power plants and fission type nuclear bombs such as the two that the United States used against Hiroshima and Nagasaki at the end of World War II. Heavy nuclei such as uranium and thorium may undergo spontaneous fission, but they are much more likely to undergo decay by alpha decay.
For a neutron-initiated chain-reaction to occur, there must be a critical mass of the element present in a certain space under certain conditions (these conditions slow and conserve neutrons for the reactions). There is one known example of a natural nuclear fission reactor, which was active in two regions of Oklo, Gabon, Africa, over 1.5 billion years ago. Measurements of natural neutrino emission have demonstrated that around half of the heat emanating from the Earth's core results from radioactive decay. However, it is not known if any of this results from fission chain-reactions.
[edit] Production of heavy elements
As the Universe cooled after the big bang it eventually became possible for particles as we know them to exist. The most common particles created in the big bang which are still easily observable to us today were protons (hydrogen) and electrons (in equal numbers). Some heavier elements were created as the protons collided with each other, but most of the heavy elements we see today were created inside of stars during a series of fusion stages, such as the proton-proton chain, the CNO cycle and the triple-alpha process. Progressively heavier elements are created during the evolution of a star. Since the binding energy per nucleon peaks around iron, energy is only released in fusion processes occurring below this point. Since the creation of heavier nuclei by fusion costs energy, nature resorts to the process of neutron capture. Neutrons (due to their lack of charge) are readily absorbed by a nucleus. The heavy elements are created by either a slow neutron capture process (the so-called s process) or by the rapid, or r process. The s process occurs in thermally pulsing stars (called AGB, or asymptotic giant branch stars) and takes hundreds to thousands of years to reach the heaviest elements of lead and bismuth. The r process is thought to occur in supernova explosions because the conditions of high temperature, high neutron flux and ejected matter are present. These stellar conditions make the successive neutron captures very fast, involving very neutron-rich species which then beta-decay to heavier elements, especially at the so-called waiting points that correspond to more stable nuclides with closed neutron shells (magic numbers). The r process duration is typically in the range of a few seconds.
Subscribe to:
Posts (Atom)